
Common Fortify findings in jQuery
HPE Fortify
Version

16.20 and later

Programming
Language

C/C++
.NET
Java
Objective
-C
Other

Fortify Audit
Workbench

Yes
No

Fortify IDE
Plugin

Yes
No

Other Fortify
Component

Yes
No

Request code review tools,
validations, and support HERE.

This page has been made public for vendors

Question

When scanning my code, I am seeing findings like Insecure Randomness and Dynamic
Code Injection identified in jQuery. How can I audit these findings?

Answer

It is important to audit all findings identified by Fortify to determine if they pose a risk to
the application, including those in third party libraries like jQuery. See this technical note

 for more general information on this topic.on auditing third party code

The following recommendations apply to jQuery versions 1.x - 3.1.1

Insecure Randomness

These are usually false positives in jQuery.

The main concern with Insecure Randomness is when a pseudo-random number
generator (PRNG) is used for cryptography or in a security context. If the PRNG is not
used for cryptography, then it is likely not an issue. For example, in jQuery, random
numbers are used for several reasons such as generating a unique version number and
for unique element identifiers. See the following example where jQuery uses the
insecure to generate a unique version number:Math.random()

jQuery.extend({
 // Unique for each copy of jQuery on the page
expando:
 "jQuery" + (version + Math.random()).replace(
/\D/g, ""),
 ...
});

In this case, the PRNG is not used in a security context so it is not a concern. This kind
of analysis ensures the application is safe regardless of whether or not this portion of
code is in use by the application.

Dynamic Code Evaluation

These are often false positives in jQuery.

The concern with Dynamic Code Evaluation findings is when unvalidated user input (or
any data external to the application) is interpreted as code by the application. In the
following example, jQuery calls which executes a function after asetTimeout()
specified amount of time. Since evaluates the code provided to it, itsetTimeout()
could potentially be used to execute malicious code. In this case jQuery defines an
anonymous function that aborts the jQuery XMLHttpRequest () after a timeout:jqXHR

jQuery use of Math.random()

https://wiki.mobilehealth.va.gov/display/OISSWA/Frequently+Asked+Questions
https://wiki.mobilehealth.va.gov/display/OISSWA/How+to+audit+findings+in+third-party+code
https://wiki.mobilehealth.va.gov/display/OISSWA/How+to+audit+findings+in+third-party+code
https://wiki.mobilehealth.va.gov/display/OISSWA/How+to+audit+findings+in+third-party+code

// Timeout
if (s.async && s.timeout > 0) {
 timeoutTimer = window.setTimeout(function() {
 jqXHR.abort("timeout");
 }, s.timeout);
}

Since there is no user or external input being used in the call to , thissetTimeout()
finding is not a concern. Note that this only applies to Dynamic Code Evaluation
findings that involve calls to similar to the above example. OthersetTimeout()
findings need to be evaluated on a case-by-case basis.

JavaScript Hijacking

These need to be reviewed in the context of how the application is using jQuery.

Applications that use JavaScript Object Notation (JSON) to transport sensitive data can
be vulnerable to JavaScript Hijacking, so these findings need to be evaluated on a
case-by-case basis. If JSON is being used to transport confidential information, it's
possible that a loophole in the Same Origin Policy could allow JavaScript from one site to
be executed in the context of another site. An attacker would then be able to take
advantage of this by witnessing the results of their code being run on the vulnerable site.
See the Details and Recommendations tabs in Fortify as well as the resources below for
more information.

References

VA Software Assurance Wiki - Auditing Third Party Code
OWASP - Insecure Randomness
OWASP - Dynamic Code Evaluation
CAPEC/MITRE - JSON Hijacking
jQuery

jQuery use of setTimeout()

https://wiki.mobilehealth.va.gov/display/OISSWA/How+to+audit+findings+in+third-party+code
https://www.owasp.org/index.php/Insecure_Randomness
https://capec.mitre.org/data/definitions/111.html
https://jquery.com/

	Common Fortify findings in jQuery

